Like Terms are those terms that are containing identical variables that are raised to identical power(s).

For example, the terms −8*x* and 3*x* are “like terms” here, just like 0.5*xy*^{2 }and 8*xy*^{2} are “like terms.”

### Online GED Classes – Fast and Easy

Prepare Quickly To Pass The GED Test.

Get Your Diploma in **2 Months**.

**This lesson is provided by Onsego GED Prep.**

### Video Transcription

The concepts of the distributive property may also help us understand one fundamental idea in algebra. This is that we can add and subtract quantities such as 12*x* and 3*x* in the same way as the numbers 12 and 3.

Let’s take a look at an example and see how we can do this.

**Add: 3 x + 12x.**

From earlier studies about the distributive property and also from studying and using the commutative property, we know that *x*(3 + 12) is exactly the same as

### Online GED Classes-Fast, Simple and Cheap

Get Your GED Diploma in 2 Months.

A Customized Plan To Help You Get Your Diploma Fast & Easy.

3(*x*) + 12(*x*).

This: *x*(15)

So the answer is: 3*x* + 12*x* = 15*x*

So we call groups of terms which are consisting of coefficients that are multiplied by identical variables “like terms”.

The concept of “combining like terms” is often used in GED Math questions.

Look at the following table that’s showing a few different sets, or groups, of these “like terms”:

Groups of Like Terms |

3x, 7x, −8x, −0.5x |

−1.1y, −4y, −8y |

12t, 25t, 100t, 1t |

4ab, −8ab, 2ab |

Again, Like Terms are terms that contain identical variables that are raised to the identical power(s).

The concept of “combining like terms” is used frequently in the GED Math exam.

And the fundamental algebraic concept of “Distributive Property” tells us that may add and subtract quantities like 12y and 3y in the same way as 12 and 3.