Like Terms are those terms that are containing identical variables that are raised to identical power(s).

For example, the terms −8*x* and 3*x* are “like terms” here, just like 0.5*xy*^{2 }and 8*xy*^{2} are “like terms”.

The concepts of the distributive property may also help us understand one fundamental idea in algebra. This that we can add and subtract quantities such as 12*x* and 3*x* in the same way as the numbers 12 and 3.

Let’s take a look at an example and see how we can do this.

**Add: 3 x + 12x.**

From earlier study about the distributive property and also from studying and using the commutative property, we know that *x*(3 + 12) is exactly the same as

3(*x*) + 12(*x*).

This: *x*(15)

So the answer is: 3*x* + 12*x* = 15*x*

So we call groups of terms which are consisting of coefficients that are multiplied by identical variables “like terms”. Look at the following table that’s showing a few different sets, or groups, of these “like terms”:

Groups of Like Terms |

3x, 7x, −8x, −0.5x |

−1.1y, −4y, −8y |

12t, 25t, 100t, 1t |

4ab, −8ab, 2ab |

This lesson is very important.

The concept of “combining like terms” is often used in GED Math questions.

Next lesson: Algebraic expressions

*Last Updated on April 12, 2021.*